- Alexander FA, Roberts MM. The menopause and breast cancer. J Epidemiol Comm Hith 1987, 41, 94-100.
- Pike MC. Hormonal contraception with LHRH agonists and the prevention of breast and ovarian cancer. In: Mann RD, ed. Oral Contraceptives and Breast Cancer Carnforth, Parthenon Publishing Group. 1990, 323-348.
- Kelsey JL. A review of the epidemiology of breast cancer. Epidemiol Rev 1979, 1, 74–109.
- 26. Kvåle G, Heuch I. A prospective study of reproductive factors and
- breast cancer. II. Age at first and last birth. Am J Epidemiol 1987, 126, 842-850.
- Lund E. Childbearing in marriage and mortality from breast cancer in Norway. *Int J Epidemiol* 1990, 19, 527–531.

Acknowledgements—This research is based on data made available by the Cancer Registry, the National Health Screening Service, and the Central Bureau of Statistics of Norway. Dr Vatten is a research fellow of the Norwegian Cancer Society.

Eur J Cancer, Vol. 28A, No. 6/7, pp. 1153-1161, 1992. Printed in Great Britain 0964–1947/92 \$5.00 + 0.00 © 1992 Pergamon Press Ltd

Host Factors and Breast Cancer Growth Characteristics

David M. Ingram, Anthony Roberts and Elizabeth M. Nottage

The rate of growth and spread of breast cancer varies considerably from patient to patient. An observational study was undertaken to identify possible associations between breast cancer growth characteristics and a wide variety of host factors, including demographic, anthropometric, hormonal and dietary variables in 91 patients with breast cancer. Increasing age was associated with favourable growth characteristics, while previous tonsillectomy was associated with adverse growth characteristics. There were no significant associations in anthropometric variables. For postmenopausal women, increasing bioavailability of oestradiol was associated with favourable growth characteristics, while increasing prolactin concentration was associated with adverse growth characteristics. Increasing consumption of sugar, fibre, fruit and vegetables and vitamins was associated with favourable growth characteristics. Consumption of fat (monounsaturated and saturated) was associated with adverse characteristics when adjustment was made for total energy intake. The host environment may play a role in the control of breast cancer growth. In particular, the associations with oestrogen and progesterone receptor status indicate that nutrients may be of value as biological response modifiers in patients having hormonal therapy. This requires further investigation to assess therapeutic potential.

Eur J Cancer, Vol. 28A, No. 6/7, pp. 1153–1161, 1992.

INTRODUCTION

THE RATE of growth and spread of breast cancer varies considerably from patient to patient. Some patients with apparently early disease at diagnosis die rapidly from widespread metastases, while other patients may report a breast lump which has barely changed over several years, yet biopsy confirms it to be malignant.

The growth of breast cancer is determined in part by the genetic make-up of the cell, and in part by a variety of host factors which may influence the local milieu around the breast cancer cells. The best-known of these host factors is the oestrogen environment, alteration of which by oophorectomy or by oestrogen receptor competitors may halt tumour growth or result in regression of the tumour [1].

To explore the possibility that some of the many host variables, as well as the oestrogen environment, may influence breast

cancer growth, an observational study was undertaken to identify possible associations between breast cancer growth characteristics and a wide variety of host factors. If host factors which influence breast cancer growth can be identified, modification of these variables may open new avenues by which tumour growth can be influenced. Variables studied included demographic, anthropometric, hormonal and dietary variables in 91 patients with breast cancer.

METHODS

Patients

91 women were identified as having early breast cancer from the pathology records at the Queen Elizabeth II Medical Centre, Perth, Western Australia. Each of these women had undergone surgery for early breast cancer and had consented to take part in the study. At around 3 months after the operation for their primary lesion, the women were interviewed at home using a structured questionnaire, had a morning, mid-luteal blood sample taken, each completed a food frequency questionnaire in regard to their dietary habits up to and including the time of the diagnosis of early breast cancer, and each had measurements of height, weight and subscapular skinfold thickness taken.

Correspondence to D. M. Ingram.

D. M. Ingram and E. M. Nottage are at the University Department of Surgery, Queen Elizabeth II Medical Centre, Perth, Western Australia 6009; A. Roberts is at Ballarat Base Hospital, Victoria, Australia. Revised 23 Sept. 1991; accepted 21 Nov. 1991.

Demographic data

Data were collected at the interview in regard to date of birth, obstetric history, previous illnesses and operations, current and recent past medications including vitamin supplements, alcohol, caffeine and tobacco consumption, hormonal use including use of the oral contraceptive pill, and physical activity. Alcohol consumption was estimated in grams per day; caffeine from coffee, tea, chocolate and cola drinks was estimated in milligrams per day; tobacco consumption as the number of cigarettes per day and an estimate of physical activity based on the number of hours per week spent in activities of at least a moderate nature. No women were using the oral contraceptive pill at time of their diagnosis of breast cancer, and none were taking oestrogen replacement therapy.

Anthropometric data

At the time of interview, measurements were made of height, weight and subcapsular skinfold thickness using the same measure, scales and callipers, respectively. Body mass index was calculated using the formula: weight divided by the square of height.

Nutritional consumption

After verbal instruction and demonstration of standard portion sizes, each woman completed a food frequency questionnaire in her own time and returned the completed questionnaire by post. Returned questionnaires were checked for completeness and any problems resolved per telephone. The food frequency questionnaire identified 179 different foods and was scored for portion size and frequency of consumption. Despite this, in 2 subjects the dietary data were incomplete and so these were excluded from the dietary analysis. Nutrient intakes were calculated by the program FREQUAN, developed by the Commonwealth Scientific and Industrial Research Organisation Division of Human Nutrition [2]. The program provides a breakdown of food consumption into nutrients and main food groups (Tables IV and V). In addition, nutrient consumption was recalculated after adjustment for total energy consumption [3].

Hormone assays

A single morning fasting mid-luteal (for premenopausal women) blood sample was collected, the serum promptly separated and glass phials each containing 1 ml of serum were frozen and stored at -70°C. The specimens were assayed in batches for total concentration of oestradiol, progesterone, prolactin and sex hormone binding globulin (SHBG) by radioimmunoassay using commercial kits. The non-protein-bound proportion was determined by rate dialysis [4] and the albumin-bound component by the same method after heat treatment of serum at 60°C for 1 h [5]. Women taking medications known to interfere with hormone levels, namely tamoxifen and chemotherapeutic agents, were excluded from the hormonal component of the data analysis (number excluded = 16). The hormonal variables were analysed separately for pre- and postmenopausal women in view of the considerable differences in hormone concentration between these groups. Where menopausal status was not apparent from history, this was determined on the basis of follicular stimulating hormone, oestrogen and progesterone concentrations. In all except 10 cases, it was not possible to clearly assign the women to pre- or postmenopausal categories.

Pathological variables

The histopathology slides of each case were reviewed by a single pathologist (A.R.) and scored for histological grade and

for vessel invasion. The histological grade was based on a 9point system, and tumours scoring 8 or 9 were regarded as poorly differentiated; 6 or 7 as moderately differentiated; and 5 or less, well differentiated. Vascular invasion was scored as positive if either lymphatic or blood vessel invasion was seen. In addition, data were extracted from the original pathology reports with regard to tumour diameter and the number of involved lymph nodes. 4 patients had only a simple mastectomy and so no data with regard to lymph node involvement were available, and in 11 reports the tumour diameter was not accurately recorded. Finally, oestrogen receptor assay data were available for 68 tumours and progesterone receptor assay data for 56 tumours, all assays having been performed at the same laboratory. Oestrogen and progesterone status was considered to be positive if the oestrogen receptor and progesterone receptor content was more than 10 fmol/l of protein, respectively.

Statistical analysis

The data were entered into a personal computer and analysed using the program EPILOG (Epicentre Software, Pasadena, California) and SAS (SAS Institute Inc., Cary, North Carolina). Associations between tumour growth characteristics and the independent variables were determined by unconditional logistic regression. Where significant associations were found for independent variables, a model was sought by stepwise logistic regression.

Means were determined for each of the variables and statistical associations determined by analysis of variance. The means are displayed in Tables 1–5.

Due to the high correlation between total energy intake and the specific nutrients, adjustment was made to the nutrients so that valid comparisons could be made. The approach of Willett and Stampfer was used [3]. A regression model was fitted with total energy as the independent variable and the specific nutrients as the dependent variables, and the data normalised by log transformation. The adjusted value for the nutrient is determined from the residuals.

RESULTS

Demographic variables (Table 1)

From our data it is apparent that older women had better-differentiated tumours which were more likely to be oestrogen receptor positive. Of the other demographic variables, there were no other significant associations, although patients who had a previous tonsillectomy were more likely to have more poorly differentiated, larger tumours with vascular invasion than patients not having a previous tonsillectomy (Fig. 1). Similarly, smoking tended to be associated with adverse characteristics, and physical activity with favourable characteristics; but these were not statistically significant.

Anthropometric variables (Table 2)

There were no significant associations for any of the anthropometric variables; however, the association between skinfold thickness and oestrogen receptor status almost reached significance, and in general a reduced skinfold thickness was associated with favourable characterics.

Hormonal variables (Table 3)

A high total oestradiol concentration was in general associated with favourable growth characteristics, both for pre- and postmenopausal groups. For postmenopausal women, significant associations were also found between the binding of oestradiol

Table 1. Demographic variables

		Differentiation	tiation		Vası	Vascular invasi	sion	Tu	Tumour diameter (mm)	ameter	(mm)		Lympl	Lymph nodes		Oest	Destrogen receptor status	ceptor	Proge	rogesterone r status	receptor s
	Well	Mod.		Poor P value	Absent	Absent Present	P value	<1.5	<1.5 1.5-2	>2	P value	. 0	1-3	>3	P value	Pos.	Neg.	P value	Pos.	Neg.	P value
**	14	21	99		44	4		27	24	30		51	22	15		32	36		23	33	
Age (vears)	61.1	61.4	53.1	0.013	9.99	55.6	0.721	56.9	57.9	56.0	0.861	57.3	58.5	51.4	0.120	59.3	52.8	0.032	59.0	56.0	0.410
Smokers (%)	7	14	30	0.226	18	28	0.378	15	38	23	0.298	81	36	27	0.361	25	22.	0.987	17	33	0.308
Alcohol (g/dav)	72	59	70	0.922	89	89	0.942	96	41	81	0.305	72.2	46.2	96.3	0.429	98	49	0.465	68	75	0.697
Caffeine (mg/dav)	223	294	258	0.496	270	249	0.561	246	295	250	0.570	268	799	240	0.862	260	251	0.839	213	253	0.407
Activity (days/year)	108	65	70	0.641	98	9	0.486	103	87	51	0.410	81	74	99	0.939	115	65	0.200	99	16	0.393
Parity (no.)	3.1	3.1	2.9	0.900	5.9	3.1	0.599	2.7	3.5	3.2	0.404	3.0	3.0	3.5	0.682	5.6	3.3	0.150	2.9	3.1	0.794
Tonsillectomy (%)	67	33	20	0.370	36	48	0.375	97	47	09	0.068	45	45	40	0.991	20	36	0.363	48	45	0.899
Appendicectomy (%)	36	38	32	0.963	39	30	0.551	37	25	40	0.675	37	32	27	968.0	38	36	0.893	97	48	0.158
Hysterectomy (%)	21	38	27	0.728	32	76	0.714	41	21	23	0.370	27	27	9	0.820	25	33	0.627	76	33	0.776

* Total n = 91. The figures given are the mean value for each group, and the significance is determined by one-way analysis of variance.

Table 2. Anthropometric variables

					ì			(;	•	,		,	•		Oestro	Destrogen receptor	eptor	Proges	terone 1	Progesterone receptor
		Differentiation	tiation		Vasc	Vascular invas	vasion	Tur	nour di	Tumour diameter (mm)		į	Lymph nodes	nodes	1		status			status	
	Well	Mod.	Poor	P value	Mod. Poor P value Absent Present	Present	P value	< 1.5	1.5-2	> 2	< 1.5 1.5-2 > 2 P value	0	1-3	> 3 I	0 1–3 > 3 P value Pos.	Pos. 1	Neg. 1	Neg. P value Pos. Neg. P value	Pos.	Neg.	P value
***************************************	41	21	56		44	46		27	24	30		51	51 22 15	15		32	36		23	33	
Weight (kg)	65.1	9.79	65.4	0.740	65.5	65.0	0.841		69.3	63.2	0.156				0.607		0.99	0.648	64.4	64.0	0.909
Height (cm)	157	154	173	0.758	160	191	0.926		160	161	0.870	160		161	0.775	160	161	0.599	160	161	0.598
Skin fold (mm)	15.6	15.4	17.3	0.758	15.8	17.3	0.531	15.3	17.1	17.4	0.774		16.8		0.995		19.3	0.051	13.6	18.5	0.176
Body mass index (kg/m²)	25.3	56.6	26.6 25.4 0.605	0.605	25.4	25.7	0.762	25.8 25.2		26.4	0.743	25.8	25.8 25.2 26.4		0.743	25.2	25.5	0.765	25.1	25.0	0.946

* Total n = 91. The figures given are the mean value for each group, and the significance is determined by one-way analysis of variance.

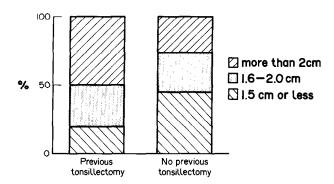
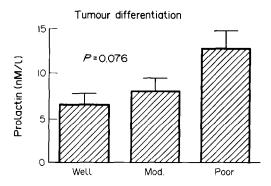
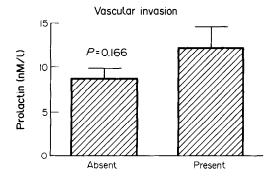




Fig. 1. The proportion of patients (%) with large (> 2 cm), medium (1.6-2.0 cm) and small (1.5 cm or less) tumours, comparing women who had had previous tonsillectomy with those who had not had previous tonsillectomy. Previous tonsillectomy is associated with an increased tumour diameter.

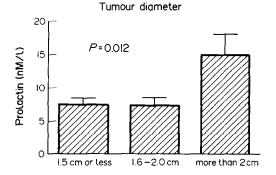


Fig. 2. Plot of mean (S.E.M.) prolactin concentration (nmol/l) for postmenopausal women by tumour differentiation, vascular invasion and tumour diameter. High prolactin levels are associated with adverse tumour growth characteristics.

(the proportion of non-protein-bound and albumin-bound oestradiol) and tumour differentiation, vascular invasion and progesterone receptor status, with higher proportions again being associated with favourable features. For prolactin, high concentrations were associated with poor growth characteristics, especially tumour grade and tumour diameter, again only in the postmenopausal group of women (Fig. 2).

Nutritional variables (Tables 4, 5)

Associations were demonstrated between a number of nutrients and food groups and tumour growth characteristics. Specifically, a high sugar consumption, both as actual consumption and after adjustment for total energy consumed, was associated with improved tumour differentiation, and almost reached significance for oestrogen receptor status. A high consumption of fibre was associated with improved tumour differentiation, reduced vascular invasion and particularly with oestrogen and progesterone receptor positivity. Increased betacarotene consumption was associated with an improved tumour differentiation, less vascular invasion and a positive progesterone receptor status (Fig. 3); increased consumption of vitamin C was associated with an improved tumour grade and progesterone receptor positivity (Fig. 4); and vitamin B₆ consumption was associated with less vascular invasion and with oestrogen and progesterone receptor positivity.

Protein consumption, consumption of fats, consumption of unrefined carbohydrate, consumption of retinol and total energy intake were not associated with any of the tumour growth characteristics when estimated for actual consumption. However, after adjustment for total energy consumption, the association with sugar remained, but now there were significant associations with fat consumption (Fig. 5). An increasing consumption of fat was associated with adverse growth characteristics, in particular with differentiation, vascular invasion, tumour diameter and oestrogen receptor status. It was the saturated and monounsaturated components which contributed to this.

Of the food groups, only fruit and vegetable consumption had significant associations, with an increasing consumption being associated with better-differentiated tumours with less vascular invasion and oestrogen and progesterone receptor positivity.

Multivariable analysis

After multivariable analysis of variables found to be statistically significant, or of near statistical significance, on individual regression, the following variables were fitted to the model for each of the pathological variables: for tumour differentiation-beta-carotene consumption, proportion of energy from monounsaturated fat; for vascular invasion-previous tonsillectomy, sugar consumption; for tumour diameter-previous tonsillectomy, consumption of leafy and orange-red vegetables; for lymph node involvement-no associations; for oestrogen receptor status-fibre consumption, age; for progesterone receptor status, fibre consumption.

DISCUSSION

In recent years there have been considerable advances made in our knowledge of the mechanisms for control of tumour cell growth, particularly in regard to growth factors [1]. The eventual aim of such research is to develop strategies by which tumour cell growth may be modified to the benefit of the host. Despite these advances, there are still knowledge deficiences as to what extent host factors may influence tumour cell growth, and how

Table 3. Hormonal variables

Well Mod.		Differentiation	Vasc	Vascular invasi	sion	Tum	nour dia	Tumour diameter (mm)	(m)		Lymph nodes	səpor		status	sn		status	status
Premenopausal	[Poor P value	Absent Present	Present	P value	< 1.5 1.5-2	ł	> 2 P	P value	0	1-3	> 3 P value	lue Pos.	Neg.	. P value	Pos.	Neg.	P value
•	20		6	17		7	9	11		19		7	∞	12		7	∞	
Total oestradiol (pmol/l) 359	458	0.329	551	362	0.042	497		_	•	461	25	_		371	_	610	588	0.005
Progesterone (nmol/1) 25	39	0.321	47	28	0.161			_		38	17					49	24	0.124
SHBG (nmol/l) 57	78	0.316	88	9	0.201		9	70 0	0.397	72	'.	77 0.799	99 81		0.455	9/	28	0.356
Free oestradiol (%) 1.17	1.29		1.18	1.32	0.062					1.26	<u>-</u>	_				1.27	1.25	0.745
Albumin-bound E_2 (%) 62	9		28	65	0.101			_		61	Ŷ	-				61	62	0.692
Prolactin (nmol/l) 13.8	16.8		18.3	16.0	0.538			_		17.0	¥	_				16.3	14.0	0.638
Postmenopausal																		
n† 7 13	3 19		24	15		15	10	10		24	6	~	12	14		œ	15	
Total oestradiol (pmol/1) 50 39	33	0.532	43	30	0.256	54	18	_		41					_	41	36	0.728
SHBG (nmol/l) 51 50	09	0.552	26	53	0.688			Ī				_			_	43	57	0.082
Free oestradiol (%) 1.41 1.46	Ь 1.28	_	1.41	1.30	0.101			1.35 0	0.452		1.29 1.	1.49 0.258	58 1.36	6 1.30	0.437	1.46	1.29	0.035
Albumin-bound E_2 (%) 72 73	3 63	0.00	71	63	0.023			_								71	4	0.112
Prolactin (nmol/1) 6.5 8.1	12.8	0.076	8.8	12.2	99.0			Ī				_			_	8.7	11.5	0.470

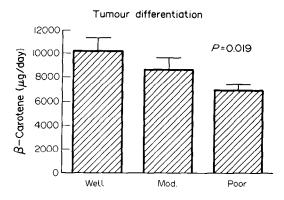
* Total n = 26. † Total n = 39.

The figures given are the mean value for each group, and the significance is determined by one-way analysis of variance.

The numbers in some groups of the premenopausal women are very small, and so have been combined (tumour differentiation, no. of lymph nodes involved).

Women taking medications which might influence hormone levels, such as tamoxifen, have been excluded from the analysis (n = 16), as were women whose menopausal status was unclear (n = 10).

Table 4. Nutrient variables


	ļ	Differe	Differentiation		Va	Vascular invasion	sion	T _m	mour di	Tumour diameter (mm)	mm)	I	Lymph nodes	nodes	· 1	Oestrogen receptor status	gen recel status	btor	Proge recept	Progesterone receptor status	sı sı
	Well	Mod.	Poor	P value	Absent	Present	P value	< 1.5	1.5-2	2 ×	P value	0	1-3	> 3 v	P value	Pos. 1	Neg. v	P value F	Pos. N	Neg. v	P value
*	41	21	\$2		43	45		79	24	30		51	22	41	<u> </u> 	32	35)	23	32	{
.ctual consumption Energy (kJ/day) Total carbohydrate (g/day)	8355	8824 251	7950 205	0.448	8428 227	8072 218	0.540	8680 234	7707 216	8267 212	0.447	8498 228	7525 205	8666 0		8716 7 240	7691 0 206 0	0.140 8 0.096	8171 7 224	7790 0 208 0	0.593
Sugars (g/day)	139	141	108	0.020	124	119	0.638	125	128	111	0.469	124	117	119 0	0.146	136		0.064	129		399
Protein (g/day)	81	8 8	83	0.511	S 88	81	0.276	87	3 6	8	0.514	\$ %	72		0.313	£ 88		0.153	2 8		.923
Fat (total (g/day) Saturated (g/day)	9 8	31	31	0.794	71 30	71 32	0.922	73 31	62 53	33	0.379 0.617	73 32	5 7 8 7	78 0 33 0	0.545 0.299	31		0.663 0.801	2 9	8 2 0 0	0.716
Monounsaturated (g/day)	25	27	27	0.710	27	27	0.910	28	24	29	0.315	27	25		0.266	27	26 0	0.641	26		
Fibre (g/day)	31	29	25	0.118	29	25	0.078	28	24	24	0.256	27	77		0.606	31		0.012	31		
Retinol (units/day) Betacarotene (µg/day)	903 10235	912 8658	789	0.881	672 8847	1006	0.152 0.028	769 8324	1067 7482	789	0.607	775 7948	723 7744		.980	•		•	•		177.
B ₁ (mg/day) B ₆ (mg/day)	1.47 2.03	1.48	1.34	0.441	4.1 4.1 5.1	1.35	0.384	1.47	1.33	1.34	0.476	1.40	1.27	1.59 0 2.04 0	0.165	1.52	1.31 0	0.100 1	1.47 1	1.26 0.1.62 0.25	0.075
E (mg/day)	6.8	6.5	5.7	0.195	6.3	5.9	0.353	6.3	5.4	5.9	0.271	6.0	5.9		544			_		_	058
inergy adjusted consumption Sugars	137	125	108	0.014	120	114	0.396	118	126	109	0.234	116	124	110 0	0.536	125		0.266	126		0.295
Protein Fars	7.	83	82	0.355	83 %	81	0.357	83	82	8.	0.929	8 3	8 2		069.	83	8 8	.631	79	82 0	411
Saturated Monounsaturated Polyunsaturated	27 23 12	27 24 13	37 28 13	0.020 0.001 0.804	28 25 13	31 27 13	0.015 0.205 0.863	27 25 13	31 26 12	31 28 14	0.045 0.050 0.362	29 26 13	31 26 12	29 0 27 0 14 0	0.747 0.483 0.313	28 25 13	31 0 27 0 13 0	0.046 0.109 0.730	29 26 14	31 0 26 0 12 0	0.226 0.907 0.331

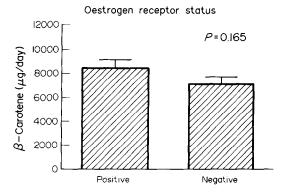

* Total n=89. The figures given are the mean value for each group, and the significance is determined by one-way analysis of variance.

Table 5. Food group variables

		Differe	Differentiation		Vasc	Vascular invasion	ion	Tur	Tumour diameter (mm)	ameter (mm)		Lymph nodes	nodes		Oestro	Oestrogen receptor status	eptor	Proges	Progesterone receptor status	eceptor
	Well	Mod.	Poor	P value	Absent	Present	P value	< 1.5	1.5-2	> 2	P value	0	1–3	> 3 1	P value	Pos.	Neg.	P value	Pos.	Neg.	P value
***	4	21	54		43	45		26	24	30		51	22	4.		32	35		23	32	.
Cereal products (g/day)	29	81	70	0.467	<i>L</i> 9	9/	0.366	75	29	71	0.753	72	9	98	0.241	74	34	0.940	73	69	0.660
Cakes and desserts (g/day)	54	99	38	0.221	43	47	0.645	20	20	42	0.767	53	36	30	0.159	53	37	0.167	46	47	0.932
Dairy (total) (g/day)	28	70	62	0.545	61	9	0.496	61	64	65	0.905	63	62	69	0.752	99	2	0.765	61	\$	0.737
Eggs (g/day)	3.6	6.5	4.5	0.083	4.3	5.3	0.294	4.1	8.4	5.0	0.701	4.4	5.4	5.0	0.645	5.3	4.3	0.318	5.0	4.1	0.432
Marg. and butter (g/day)	12.2	13.7	12.7	0.860	12.6	13.2	0.713	14.0		13.7	0.375	12.4		16.4	0.247	11.7	14.1	0.223	11.9	12.2	988.0
Milk products (g/day)	45	49	45	0.771	4	47	0.629	43		46	0.852	5	4	48	0.911	49	5	0.618	4	84	8/9.0
Meat (total) (g/day)	20	59	59	0.511	61	55	0.296	59	52	61	0.485	9	51	59	0.368	59	51	0.245	52	55	0.603
Red meat (g/day)	32	4	43	0.340	4	4	0.429	4	35	45	0.331	4	36	42	0.454	45	36	0.360	36	39	0.739
Chicken and fish (g/day)	17.7	15.4	15.3	0.638	16.4	15.0	0.433	14.4	16.7	15.3	0.651	15.6	14.7	17.2		16.7	15.1	0.466	15.3	16.5	0.635
Savouries (total) (g/day)	20	48	47	996.0	52	43	0.168	51	9	84	0.433	49	41	57	0.288	49	45	0.641	94	42	0.594
Pizza, stew, etc. (g/day)	33	36	33	0.627	38	30	0.133	34	31	33	0.887	37	28	37	0.339	35	30	0.369	32	28	0.529
Chips, twisties (g/day)	16.4	9.3	14.5	0.434	14.1	13.1	0.786	16.6	9.2	15.6	0.328	12.2	13.2 2	20.4	0.332	13.4	15.4	0.688	14.0	13.5	0.937
Fruit (total) (g/day)	69	57	42	0.011	51	48	0.623	49	20	47	0.908	20	43	28	0.364	58	46	0.142	9	4	0.100
Yellow/orange (g/day)	28	21	16	0.082	17	20	0.540	61	20	16	608.0	18	17	22	999.0	22	18	0.412	27	18	0.191
Other (g/day)	41	37	76	0.032	34	28	0.195	30	31	30	0.997	32	56		0.374	36	28	0.134	35	56	0.189
Vegetables (g/day)	28	52	55	0.8490	62	49	0.042	63	84	51	0.170	54	26	28	0.936	65	47	0.093	61	43	0.012
Leafy/orange (g/day)	28	70	21	0.240	7 6	19	0.037	27	70	18	0.073	22	25	19	0.537	25	19	0.112	28	17	0.011
Starchy (g/day)	30	32	34	0.818	36	30	0.177	36	78	33	0.406	33	331	38	0.629	34	28	0.223	33	76	0.133
Fruit and veg. (total) (g/day)	127	110	26	0.077	114	26	0.086	111	86	86	0.379	105	66	116	0.535	117	93	0.031	121	88	0.008
															!				ŧ		

* Total n=89. The figures given are the mean value for each group, and the significance is determined by one-way analysis of variance.

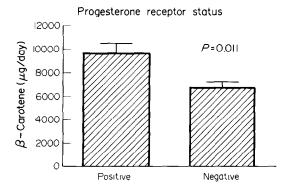
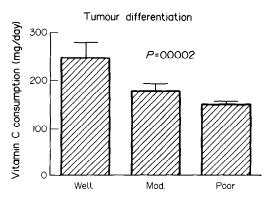
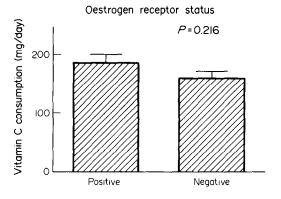


Fig. 3. Plot of mean (S.E.M.) beta-carotene consumption (μg/day) by tumour differentiation, and oestrogen and progesterone receptor status. A high consumption of beta-carotene was associated with favourable tumour growth characteristics.


much is inherent in the genetic make-up of the cell itself. Our study sought to add to this knowledge by investigating associations between a broad range of host factors and breast cancer growth characteristics.


Discussing each association in turn, the association with age has been previously described, with older patients having better-differentiated tumours [6]. The association between previous tonsillectomy and more aggressive breast cancer growth characteristics has not been previously reported; and there has been only one report that previous tonsillectomy is a risk factor for the development of breast cancer [7]. If such an association is real, then presumably there is an immunological link.

The lack of associations with weight and body mass index is surprising, although skinfold thickness did appear to be associated with adverse features. Several reports in the past have documented that obese women with breast cancer have a poorer prognosis [8–10], and we have previously reported that obese

women are more likely to have large tumours [11]. This probably has a hormonal basis and relates to both the reducing binding of oestradiol to SHBG in obese women, and to the lipocyte as a site of conversion of precursors to oestrogen.

Oestradiol is transported in the serum either non-protein-bound (free), loosely bound to albumin or tightly bound to SHBG. It is believed that the free and albumin-bound proportions represent the available and thus biologically important components [12]. Significant, but inverse, associations were demonstrated between the binding of oestradiol and various growth characteristics in postmenopausal women, i.e. as the proportion of oestradiol which was non-protein-bound or albumin-bound increased, the tumours were better differentiated with less vascular invasion and a tendency to hormone receptor positivity. This rather unexpected finding is out of context with the concept that oestrogens promote breast cancer growth. Prior to the advent of tamoxifen, however, oestrogens were often

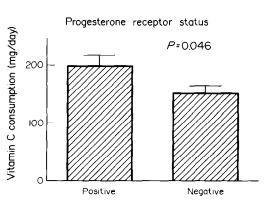
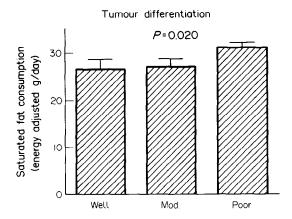



Fig. 4. Plot of mean (S.E.M.) vitamin C consumption (mg/day) by tumour differentiation, and oestrogen and progesterone receptor status. High levels of vitamin C consumption were associated with favourable growth characteristics.

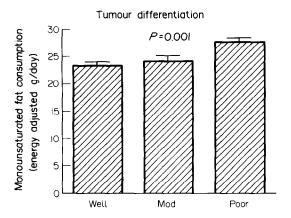


Fig. 5. Plot of the adjusted energy consumption of fat (saturated and monounsaturated) by tumour differentiation [mean (S.E.M.)]. An increased fat consumption was associated with more poorly differentiated tumours.

prescribed for patients with advanced breast cancer with good effect [13], suggesting they may also have a suppressor role. The finding of an association between prolactin concentration and tumour differentiation and tumour diameter for postmenopausal women, suggests that this hormone promotes tumour growth. Prolactin antagonists are not widely used in breast cancer management [14], although in the light of our findings perhaps these agents should be investigated further.

The finding of an association between consumption of fat and breast cancer prognostic indicators has been previously reported [15], as have associations with fibre and carbohydrate consumption [16]. Our study confirms these and provides additional data. In particular, the numerous associations between vitamins and tumour growth characteristics and the associations with fruit and with vegetable consumption have not previously been reported in humans, and may provide the beginning of a scientific basis for the use of nutrients as tumour growth modifiers in breast cancer patients. These findings may also explain the observation that breast cancer mortality in the United Kingdom fell dramatically at the start of World War II, coincident with a marked increase in the consumption of fruit and vegetables [17]. Perhaps this dietary change altered the rate of tumour growth, with consequent reduction in mortality? Similarly, breast tumours in Japanese women are better differentiated, with longer patient survival, an observation which may

be explained by our findings in relation to associations between nutrient consumption and growth characteristics [18].

In conclusion, this study has made a number of observations which need to be followed further. In particular, the nutritional associations need to be investigated, as there is therapeutic potential as biological growth modifiers, especially when one considers the associations of nutrients with oestrogen and progesterone receptor status. Repeating the study with another set of breast cancer patients, testing the observations in an animal model, investigating the relationship of nutritional intake to tumour growth factors and eventually looking at nutrition in relation to survival are all avenues which should be explored.

- Lippman ME, Dickson RB. Growth control of normal and malignant breast epithelium. Proc R Soc Edinburgh 1989, 95B, 89-106.
- Baghurst RI, Record SJ. A computerised dietary analysis system for use with diet diaries of food frequency questionnaires. Comm Health Stud 1984, 8, 11-18.
- 3. Willett W, Stampfer MJ. Total energy intake and its implications for epidemiological analyses. AmJ Epidemiol 1986, 124, 17-27.
- Willcox DL, McColm SC, Arthur PG, Yovich JL. The application of rate dialysis to the determination of free steroid in plasma. Ann Biochem 1983, 135, 304-311.
- Hammond GL, Lahteenmaki PLA, Lahteenmaki P, Luukkainen T. Distribution and percentages of non-protein-bound contraceptive steroids in human serum. J Steroid Biochem 1982, 17, 375-380.
- Daniell HW. The influence of obesity and age at diagnosis on the oestrogen receptor status of breast cancers. Cancer 1988, 61, 1237-1240.
- Lubin JH, Burns PE, Blot WJH, Lees AW, May C, Morris LE, Fraumeni JF. Risk factors for breast cancer in women in northern Alberta, Canada, as related to age at diagnosis. J Natl Cancer Inst 1982, 68, 211-217.
- 8. Tartter P. Cholesterol and obesity as prognostic factors in breast cancer. Cancer 1981, 47, 2222-2227.
- 9. Boyd NF. Body weight and prognosis in breast cancer. J Natl Cancer Inst 1981, 67, 785-789.
- Donegan WL, Hartz AJ, Rimm AA. The association of body weight with recurrent cancer of the breast. Cancer 1978, 41, 1590-1594.
- Ingram DM, Huang H-Y, Catchpole BN, Roberts A. Do big breasts disadvantage women with breast cancer? Aust NZ J Surg 1989, 59, 115-117.
- Siiteri PK, Murai JT, Hammond GL, Nisker JA, Raymoure WJ, Kuhn RW. The serum transport of steroid hormones. Recent Prog Hormone Res 1982, 38, 457.
- Segaloff A. Hormone therapy of breast cancer. In: Banbury Report 8—Hormones and Breast Cancer, eds. Pike M, Siiteri P and Welsch C. Cold Spring Harbour Laboratory 1981, 229-239.
- Fentiman IS, Brame K, Chaudary MA, Camplejohn RS, Wang DY, Willis RR. Perioperative bromocriptine adjuvant treatment for operable breast cancer. *Lancet* 1988, 1, 609-610.
- Verreault R, Brisson J, Deschenes L, Ward F, Meyer F. Belanger L. Dietary fat in relation to prognostic indicators in breast cancer. 3 Natl Cancer Inst 1988, 80, 819-825.
- Hollm L-E, Callmer E, Hjalmar M-L, Lidbrink E, Nilsson B, Skoog L. Dietary habits and prognostic factors in breast cancer. J Natl Cancer Inst 1989, 81, 1218-1223.
- Ingram DM. Trends in diet and breast cancer mortality in England and Wales 1928-77. Nutr Cancer 1981, 3, 75-80.
- Stemmerman GN, Catts A, Fukunago FH, Horie A, Nomara AMY. Breast cancer in women of Japanese and Caucasian ancestry in Hawaii. Cancer 1985, 56, 206-209.

Acknowledgements—We would like to thank the Sir Charles Gairdner Hospital Research Foundation and the Cancer Foundation of Western Australia for their financial support; Dr David Willcox and Mr Frank Watson for guidance with the hormonal assays; Dr Andrew Woods for his statistical advice; Mrs Alison Ginsberg for typing the manuscript; Mrs Peta Diffen for collating the data; the Western Australian surgeons who allowed their patients to be studied; and the breast cancer patients who unselfishly gave their time for the study.